

BIOSYNTHESIS OF METELOIDINE FROM 3 α -TIGLOYLOXYTROPANE IN *DATURA INNOXIA*

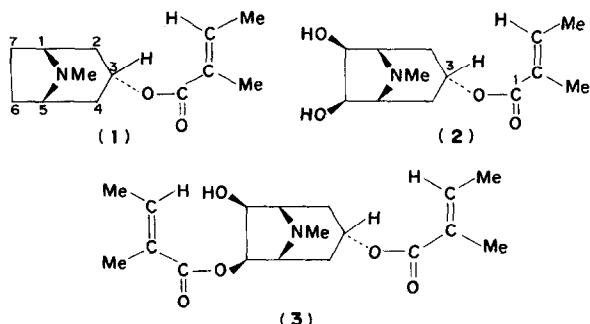
EDWARD LEETE and DONALD H. LUCAS^T

Natural Products Laboratory*, School of Chemistry, University of Minnesota,
Minneapolis, MN 55455, U.S.A.

(Received 7 October 1974)

Key Word Index—*Datura innoxia*; Solanaceae; 3 α -tigloyloxytropane; meteloidine; alkaloid biosynthesis.

Abstract—The administration of 3 α -tigloyl-[1-¹⁴C]-oxytropane-[3 β -³H] (³H/¹⁴C = 11.0) to *Datura innoxia* plants for 7 days led to the formation of radioactive meteloidine (³H/¹⁴C = 11.6). Degradation of the meteloidine indicated that the alkaloid was labeled specifically with ³H at C-3 of its teloidine moiety, and on the carbonyl group of its tigloyl residue with ¹⁴C. These results strongly favor the hypothesis that hydroxylation of tropine occurs after formation of its tigloyl ester.


INTRODUCTION

We have previously shown [1] that the teloidine moiety of meteloidine (2) is derived from tropine, hydroxylation occurring at C-6 and C-7. The work of Evans and Woolley [2,3] suggested that this hydroxylation may occur after the formation of the tigloyl ester of tropine. We have now tested this hypothesis by feeding 3 α -tigloyl-[1-¹⁴C]-oxytropane-[3 β -³H] (1) to *Datura innoxia* plants.

RESULTS AND DISCUSSION

Tiglic-[1-¹⁴C] acid [4] and tropine-[3 β -³H] [1] were prepared as previously described. 3 α -Tigloyloxytropane was obtained by heating tigloyl chloride with tropine hydrochloride at 100° [5,6]. 3 α -Tigloyl-[1-¹⁴C]-oxytropane hydrochloride and 3 α -tigloyloxytropane-[3 β -³H] hydrochloride were assayed for radioactivity, mixed and fed to 4-month-old *Datura innoxia* plants by the wick method. The plants were harvested after 7 days. TLC on the crude alkaloids afforded radioactive meteloidine, 7 β -hydroxy-3 α ,6 β -ditigloyloxytropane (3), and 3 α -tigloyloxytropane, activities of these alkaloids being recorded in the Table. The meteloidine was degraded as previously described [1] (see Experimental) and it

was established that essentially all the ³H was located at the 3 β -position of the teloidine half of the molecule. The tiglic acid contained all the ¹⁴C activity and this was located at the carbonyl group. Since the ³H/¹⁴C ratio in the isolated meteloidine was essentially the same as in the administered 3 α -tigloyloxytropane it seems probable that hydroxylation at C-6 and C-7 occurs on the ester. The recovered 3 α -tigloyloxytropane had low specific activity indicating that it undergoes rapid metabolism in the plant. It contained very little ¹⁴C and this result can be rationalized by postulating a reversible hydrolysis of this ester to tiglic acid and tropine, the latter being then metabolized at a slower rate than tiglic acid.

The incorporation of activity into 7 β -hydroxy-3 α ,6 β -ditigloyloxytropane was lower than that into meteloidine, and the ³H/¹⁴C ratio was much

* Contribution No. 136 from this Laboratory.

Table 1. Activities of the 3α -Tigloyl-[$1-^{14}\text{C}$]-oxytropane-[$3\beta-^3\text{H}$] fed, the isolated alkaloids, and the degradation products of meteloidine

Alkaloids (wt)	Specific activity (dpm/mM)		Specific incorporation (^3H , %)	
	^3H	^{14}C	$^3\text{H}/^{14}\text{C}$	
Alkaloid fed				
3α -Tigloyl-[$1-^{14}\text{C}$]-oxytropane-[$3\beta-^3\text{H}$]-HCl (20 mg)	1.34×10^9	1.22×10^8	11.0	
Alkaloids isolated				
Meteloidine (38 mg)	4.75×10^6	4.10×10^5	11.6	0.35
3α -Tigloyloxytropane (26 mg)	2.27×10^4	$<2.0 \times 10^2$	>100	0.0017
7β -Hydroxy- $3\alpha,6\beta$ -ditigloyl-oxytropane (18 mg)	1.17×10^6	3.31×10^4	35	0.09
Degradation products of the meteloidine				
Isopropylideneteloidine	4.10×10^6	negligible		
Isopropylideneteloidinone	$<0.1 \times 10^6$	—		
Tigloyl- α -naphthylamide	6.0×10^3	3.59×10^5		
Barium carbonate (from the COOH group of tiglic acid)	—	3.3×10^5		

higher than the administered 3α -tigloyloxytropane. This result suggests that one or both of the tigloyl residues of this alkaloid are labile, reversible hydrolysis and esterification with non-radioactive tiglic acid occurring during the feeding experiment.

EXPERIMENTAL

General methods. A Nuclear Chicago Mark II Liquid scintillation Counter was used for assay of the radioactive compounds using dioxane-EtOH with the usual scintillators [7].

3α -Tigloyloxytropane-[$3\beta-^3\text{H}$] hydrochloride. Tigloyl chloride (236 mg, 2 mM) and tropine-[$3\beta-^3\text{H}$] hydrochloride [1] (190 mg, 3.0×10^9 dpm, 1.1 mM) were heated on a steam bath for 1.5 hr. Dil. K_2CO_3 (5%) was added to cooled reaction mixture which was then extracted with Et₂O. Residue obtained on evaporation of dried (MgSO_4) extract was treated with a soln of HCl in Et₂O. The resultant solid was crystallized to constant activity from EtOAc affording 3α -tigloyloxytropane-[$3\beta-^3\text{H}$] hydrochloride (50 mg), mp 215–216° (lit. [6] mp 214.5–217.5°), having an activity of 2.68×10^9 dpm/mM.

3α -Tigloyl-[$1-^{14}\text{C}$]-oxytropane hydrochloride. Tiglic-[$1-^{14}\text{C}$]-acid [4] (460 mg, 1.1×10^9 dpm, 4.6 mM) and SOCl_2 (6 ml) were stirred at room temperature for 30 min and then refluxed for 2 hr. Excess SOCl_2 was removed at red pres and the residual tigloyl chloride heated with tropine hydrochloride (950 mg, 5.53 mM) on a steam bath for 1.5 hr. The 3α -tigloyl-[$1-^{14}\text{C}$]-oxytropane hydrochloride was isolated as described in the previous section and had an activity of 2.44×10^8 dpm/mM.

Administration of 3α -tigloyl-[$1-^{14}\text{C}$]-oxytropane-[$3\beta-^3\text{H}$] hydrochloride to *D. innoxia* and isolation of the alkaloids. The previously described ^3H and ^{14}C labeled 3α -tigloyloxytropane hydrochloride (10 mg of each) were dissolved in H₂O and fed to 8–4-month-old *D. innoxia* plants growing in soil in a greenhouse, by means of cotton wicks inserted into the stems of plants near to ground level. After 1 week the plants

were harvested (fr. wt 745 g) and macerated in a Waring blender with a mixture of CHCl₃ (1 liter), Et₂O (1 liter), and conc NH₄OH (250 ml). The organic layer was evaporated to 600 ml, and extracted with 2 N H₂SO₄ (6 × 200 ml). This acid extract was made basic with K₂CO₃ and extracted with CHCl₃. Dried (MgSO_4) extract on evaporation yielded crude alkaloids (215 mg, ^3H : 4.63×10^8 dpm, ^{14}C : 2.1×10^5 dpm). Alkaloids were separated by preparative TLC on Si gel PF-254 (Merck) as previously described [1].

Degradation of the meteloidine. The meteloidine isolated from the plant was converted to isopropylideneteloidine and tiglic acid (assayed as tigloyl- α -naphthylamide [8] as previously described [9]. The isopropylideneteloidine was oxidized with CrO₃ in C₅H₅N affording isopropylideneteloidinone. The tiglic acid was subjected to a Schmidt reaction affording CO₂ which was collected and assayed as BaCO₃. The activities of these degradation products are recorded in the Table.

Acknowledgement—This investigation was supported by a research grant GM-13246 from the National Institutes of Health, U.S. Public Health Service.

REFERENCES

1. Leete, E. (1972) *Phytochemistry* **11**, 1713.
2. Evans, W. C. and Woolley, J. G. (1965) *J. Pharm. Pharmacol.* **17**, 375.
3. Woolley, J. G. (1966) *Abhandl. Deut. Akad. Wiss. Berlin, Kl. Chem. Geol. Biol.* **(3)** 531.
4. Basey, K. and Woolley, J. G. (1973) *Phytochemistry* **12**, 2883.
5. Barger, G., Martin, W. G. and Mitchell, W. (1937) *J. Chem. Soc.* 1820.
6. Leary, J. D., Khanna, K. L., Schwarting, A. E. and Bobbitt, J. M. (1963) *Lloydia* **26**, 44.
7. Friedman, A. R. and Leete, E. (1963) *J. Am. Chem. Soc.* **85**, 2141.
8. Leete, E. (1973) *Phytochemistry* **12**, 2203.
9. Leete, E. and Nelson, S. J. (1969) *Phytochemistry* **8**, 413.